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Re#ection, transmission and dissipation of the energy of an incident extensional wave at
a linearly viscoelastic junction between two uniform and collinear linearly elastic bars are
considered. The junction consists of a "nite number of uniform segments of the same
material and length. The optimum shape of a junction with given material, length and
number of segments which maximizes the energy transmission for given input and output
bars and a given incident wave of "nite duration is determined numerically with the use of
a quasi-Newton method. Results are presented for rectangular incident waves of di!erent
durations and 40-segment junctions of standard linear solid material. In the special case of
linearly elastic material, the optimum junctions have piece-wise constant characteristic
impedances with a certain number of plateaux of equal lengths. These plateaux are
independent of the number of segments provided that this number is an integral multiple of
the number of plateaux. The optimum viscoelastic junctions have the appearance of
deformed and displaced versions of their elastic counterparts. Thus, the plateaux of the
elastic junctions are increasingly deformed and displaced with increased damping and, less
markedly, with decreased response time of the material. The transitions between these
plateaux of a junction appear to be discontinuous, similarly as in the case of elastic material.
The apparent discontinuities become less notable with increased damping of the material.

( 2001 Academic Press
1. INTRODUCTION

The ability of elastic waves to carry energy is sometimes used in engineering applications. In
percussive drilling of rock, for example, such waves serve to transport energy through a drill
string to a drill bit. These waves are commonly transmitted through junctions, where some
of their energy is re#ected and some is dissipated. Similarly, when any structure is subjected
to a load with short duration, waves are generated and transmitted to parts of the structure
where they are sometimes useful and sometimes detrimental. When the waves are
transmitted through junctions of various kinds, parts of their energy are re#ected and other
parts are dissipated due to, for example, material damping. Depending on the application, it
is sometimes desirable either to minimize or to maximize the transmission of wave energy
through a junction.
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A number of papers have dealt with the transmission of waves through junctions
and maximization of the energy transmission either by optimizing the shape of the
incident wave or by optimizing the junction. Early work concerning wave propagation
in non-uniform elastic bars was carried out by Donnell [1]. Some general results for
elastic junctions were obtained by Andersson and Lundberg [2]. Wave propagation in
non-uniform viscoelastic bars was studied by Mao and Rader [3]. The possibility that
di!erent junctions may have the same transmission properties was investigated in the
elastic case by Nygren et al. [4]. A related problem in the viscoelastic case was studied
by the same authors [5]. The problem of optimizing the shape of the incident wave
was considered by Lundberg et al. [6] for elastic junctions and by Nygren et al. [7]
for viscoelastic ones. The optimization of elastic junctions was studied by Gupta [8],
who used a numerical approach. A similar problem was tackled by Konstanty and Santosa
[9], who were concerned with the design of minimally re#ective coatings and used
a numerical time-domain approach. Recently, the optimization of elastic junctions, was
treated also by Nygren et al. [10], who used a variational approach and showed that, for
a class of incident waves with piece-wise constant amplitudes, the optimum junctions have
piece-wise constant characteristic impedances with a certain number of plateaux with equal
transit times.

This paper is concerned with the re#ection and transmission of the energy of an incident
extensional wave at a non-uniform viscoelastic junction between two uniform and collinear
elastic bars. More speci"cally, the aim is to determine the optimum junction with given
material and length, which maximizes the energy transmission for given characteristic
impedances of the input and output bars and a given incident wave of "nite duration. The
study is restricted to junctions which consist of a "nite number of uniform segments.
The e!ects of this restriction can be relieved by choosing the number of segments to be large.
The model used and the results obtained can be interpreted also for other systems such as
non-uniform viscoelastic layers between extended elastic media.

First, in section 2, fundamental relations for the re#ection and transmission of waves at
a non-uniform viscoelastic junction will be presented, and the optimization problem to be
solved will be formulated. Then, in section 3, it will be shown how the objective function can
be evaluated e$ciently, and the numerical optimization procedure to be used will be
presented. Finally, in section 4, numerical examples will be given for incident waves of
rectangular shape and junctions made of standard linear solid material.

2. FORMULATION OF THE OPTIMIZATION PROBLEM

Consider "rst the propagation of extensional waves in a straight non-uniform linearly
viscoelastic bar with cross-sectional area A, density o and complex modulus E. The
quantities A and o are functions of the axial co-ordinate x, while E is a function of x and the
angular frequency u. It is assumed that the viscoelastic material can be represented by
a series combination of Kelvin elements (spring and dashpot in parallel) or a parallel
combination of Maxwell elements (spring and dashpot in series). It is also assumed in each
of these cases that one spring-dashpot element is degenerated into a spring. For such
a material, the relationship between stress p and strain e can be expressed by Pp"Qe,
where P and Q are linear di!erential operators with real coe$cients [11]. Furthermore,
because of this form of the constitutive relationship, the complex modulus can be expressed
as the product

E(x, u)"E=(x)G2(x, u), (1)



Figure 1. Standard linear solid.
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where E= (x) is real and "nite, G(x,!u)"G(x, u) (complex conjugate) and G(x, u)P1 as
uPR. In particular, G(x, u)"1 in portions of the bar where the material is linearly elastic.
It follows that the wave speed c"(E/o)1@2 and the characteristic impedance Z"A(Eo)1@2
can be expressed as the products

c(x, u)"c= (x)G(x, u), Z(x, u)"Z=(x)G(x, u), (2)

where c="(E=/o)1@2 and Z="A(E=o)1@2 are real and "nite.
For the standard linear solid shown in Figure 1, which will be considered in the numerical

examples, the complex modulus is

E"E=
t
r
t
c

1#iut
c

1#iut
r

, (3)

where E="E
2
, and t

c
"q/E

1
and t

r
"q/(E

1
#E

2
) are time constants for creep and

relaxation.
Wave propagation in the bar is governed by the linear system of equations

L
Lx C

fK
vL D"

iu
c C

0 Z

1/Z 0DC
fK
vL D, (4)

where f (x, t) is the normal force, positive in tension, and v(x, t) is the particle velocity,
positive in the direction of increasing x. The functions fK (x, u) and vL (x, u) are the Fourier
transforms of f (x, t) and v(x, t); i.e., fK (x, u)":=

~=
f (x, t) e~*ut dt, and similarly for v.

Consider next a non-uniform viscoelastic junction between two semi-in"nite elastic bars
as shown in Figure 2. The junction occupies m3[0, d], where m":x

0
ds/c= (s) is the travel

time of a wave front from the origin to x, and consists of N uniform segments with di!erent
cross-sectional areas but with the same material and equal transit times h"d/N. The points
m
k
"(k!1/2)h, k"0, 1,2,N#1 are introduced; i.e., the point m

0
"!h/2 at the end of

the input bar, the mid-points m
1
, m

2
,2, m

N
of each segment, and the point m

N`1
"d#h/2

at the beginning of the output bar. The segments of the viscoelastic junction are represented
by the functions G

1
(u),G

2
(u),2,G

N
(u),G(u), the wave-front speeds c=

1
"c=

2
"

2 " c=
N
"c=, and the characteristic impedances at high frequencies Z=

1
, Z=

2
,2,Z=

N
.

Similarly, the elastic input and output bars are represented by G
0
(u),G

N`1
(u),1,

c=
0
"c=

N`1
, Z=

0
"Z

IN
and Z=

N`1
"Z

OUT
.

For the segment k in the interval (m
k
!h/2, m

k
#h/2), equation (4) gives
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Figure 2. Viscoelastic junction with N segments between elastic bars.
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where fK p
k
(u) and fK n

k
(u) represent forces at m"m

k
associated with waves travelling in the

directions of increasing and decreasing m. With the requirement of continuity of force and
particle velocity at m"m

k
#h/2"m

k`1
!h/2, this relation and its counterpart for segment

k#1 give

F) k"CkF) k`1
, (6)

where

F) k"Z~1@2
k C

fK p
k
fK n
k
D (7)

and

Ck"C
cosh(a

k
) e*uh(1@Gk`1@Gk`1)@2 sinh(a

k
) e*uh(1@Gk~1@Gk`1)@2

sinh(a
k
) e~*uh(1@Gk~1@Gk`1)@2 cosh(a

k
) e~*uh(1@Gk`1@Gk`1)@2D , (8)

with a
k
"(1/2) ln(Z

k`1
/Z

k
). For k"1, 2,2, N!1, the exponential functions in equation

(8) reduce to e$*uh@G and 1.
Repeated use of equation (6) gives

F) 0"HF)
N`1

, H"C0C12C
N~1

CN , (9)

where H is a transfer matrix which relates the vector F)
0
at the input end m"m

0
to the vector

F)
N`1

at the output end m"m
N`1

. These vectors can be written as

F)
0
"Z~1@2

IN C
fK
I
fK
R
D"C

FK
I

FK
R
D , F)
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OUT C
fK
T
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0 D , (10)

where fK
I
"fK p

0
, fK

R
"fK n

0
and fK

T
"fK p

N`1
are the forces associated with the incident and re#ected

waves in the input bar, and with the transmitted wave in the output bar.
With the use of equations (9) and (10), the re#ected and transmitted waves can be

expressed in terms of the incident wave as
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R
"(H
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/H

11
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I
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T
"(1/H

11
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I
, (11)

where H
11

(u) and H
21

(u) are the elements of transfer matrix H.
The energies carried by the incident, re#ected and transmitted waves are
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T
dt , (12)
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and the dissipated energy is

=
D
"=

I
!(=

T
#=

R
). (13)

Use of equations (11)}(13) and Parseval's identity gives the energy re#ection and
transmission coe$cients

g
R
"=

R
/=

I
"P

=
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R
DFK

I
D2 duNP

=
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I
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g
T
"=

T
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DFK
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and the energy dissipation coe$cient

g
D
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D
/=

I
"1!(g

T
#g

R
), (15)

where

kK
R
"DH

21
/H

11
D2, kK

T
"D1/H

11
D2. (16)

The relation G(!u)"G(u) and equations (2), (8) and (9) give Ck(!u)"Ck(u) and

H(!u)"H(u). It follows from equations (16) that kK
R
(!u)"kK

R
(u), and similarly for

kK
T
(u). Thus, kK

R
(u) and kK

T
(u) are even functions.

For given input and output characteristic impedances Z
IN

and Z
OUT

, material of the
junction (represented by E(u)"E=G2 (u) and o), length of the junction (represented by the
transit time d), number of segments N and incident wave F

I
of "nite duration j (F

I
(t)"0 for

tN[0, j]), the characteristic impedances Z
k
(u)"Z=

k
G(u), k"1, 2,2, N, which maximize

the energy transmission coe$cient g
T

will be sought. Thus, the following optimization
problem is posed:

Given Z
IN

, Z
OUT

, G(u), d, N and F
I
(t); "nd MZ=

k
NN
k/1

such that

u"1 ! g
T

is minimized.

As Z=
k
"A

k
(E=o)1@2, this problem is equivalent to that of determining the cross-sectional

areas MA
k
NN
k/1

which maximize the energy transmission coe$cient, i.e., the optimum shape
of the junction.

3. NUMERICAL OPTIMIZATION PROCEDURE

The optimization problem is solved here by numerically minimizing the objective
function u(Z=

1
, Z=

2
,2, Z=

N
). As there is no obvious way to express the gradients of this

function analytically, these gradients are calculated numerically by the use of "nite
di!erences. This implies repeated evaluations of the objective function, and therefore it is
important to calculate the energy transmission coe$cient g

T
(Z=

1
, Z=

2
,2, Z=

N
) e$ciently.

For convenience, it is assumed that the incident wave has unit energy =
I
"1 so that

:=
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I
D2 du"2n and

g
T
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=
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kK
T
DFK

I
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Figure 3. Character of functions involved in the integral for the energy transmission coe$cient g
T
. (a) The

function kK
T
(u) decomposed into the asymptotic part kK as

T
(u) and the remaining part kK re

T
(u). (b) Spectrum DFK

I
(u) D2 of

rectangular incident wave F
I
(t).
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It is possible to evaluate this expression directly by numerical integration. However, the
integrand generally decreases rather slowly with u. Therefore, the function kK

T
(u) is instead

decomposed into an asymptotic part kK as
T
(u) and a remaining part kK re

T
(u) so that

kK
T
"kK as

T
#kK re

T
, (18)

where kK as
T
(u) ! kK

T
(u)P0 and kK re

T
(u)P0 as uPR. This is illustrated in Figure 3, which

shows the functions kK
T
(u), kK as

T
(u), kK re

T
(u) and also DFK

I
(u)D2. With the use of this

decomposition and equation (17), the energy transmission coe$cient can be expressed as

g
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T
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T
, (19)

with
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T
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T
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I
D2 du, gre

T
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=
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T
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I
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Consider now the "rst of these relations. In order to facilitate the integration, use will be
made of the fact that kK as

T
(u) is periodic. This periodicity can be shown as follows. From

equations (1) and (3), the term iuh/G
k
in the exponents of equation (8) is equal to iuh for

k"0 and N#1, and has the expansion
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k
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r
)/2t

c
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for k"1, 2,2,N. With the use of this expansion it can be veri"ed that Ck(u)!Cas
k
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as uPR, where
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k
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1
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2
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N
"b, and b

0
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N`1
"0. As this matrix is

periodic with period 2n/h, the matrix
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0
Cas

1
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N~1
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N
(24)
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is also periodic with the same period. Also, it follows from equations (9) and (24) that
H(u)!Has(u)P0 as uPR. Thus, it follows from equation (16) that

kK as
T
"D1/Has

11
D2 . (25)

It can be shown by induction that the element Has
11

is a trigonometric polynomial
e*uh RN

k/0
a
k
e*uh(N~2k) with real coe$cients a

k
[2]. Thus, DHas

11
D2 is a linear combination of the

functions Me*u2hkNN
k/~N

. Therefore, equation (25) shows that kK as
T

is periodic with period 2n/2h
and can be expanded in the Fourier series

kK as
T
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=
+

m/~=
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m
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=
+
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ias
m
e~*u2mh (26)

with Fourier coe$cients
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m
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"

h

n P
n@2h
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T

(u) e~*m2hu du, (27)

where use has been made of the fact that kK as
T

(u) is even. By inversion,
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T
(t)"

=
+

m/~=
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m

d (t!2mh), (28)

where d(t) is the delta function.

By use of equation (17), Parseval's identity and FK
I
(u)"FK

I
(!u),
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T
"P

=

~=

kas
T
(t)g(t) dt, (29)

where

g (t)"P
=

~=

F
I
(t#u)F

I
(u) du. (30)

Clearly, g (t)"0 for tN[!j, j], as F
I
(t)"0 for tN[0, j]. Substitution of equation (28) into

(29) gives

gas
T
"

Q
+

m/~Q

ias
m

g
m
"ias

0
g
0
#2

Q
+

m/1

ias
m

g
m
, (31)

where g
m
"g(2mh), and Q is the integer part of j/2h. Here, use has also been made of

the relations g
~m

"g
m

and ias
~m

"ias
m
. The Fourier coe$cients ias

m
are obtained from the

function kK as
T
(u) by using the fast fourier transform.

Consider next the second part of equations (20) which involves the function
kK re
T
"kK

T
!kK as

T
. As the integrand is an even function (which follows from the relations

kK re
T
(!u)"kK re

T
(u) and FK

I
(!u)"FK

I
(u)), it is su$cient to consider positive values of u. Also,

as illustrated by Figure 3, the integrand generally decreases rapidly towards zero as
u grows. Therefore, the integration can be carried out numerically with use of the
trapezoidal rule. The lower limit of integration is taken as zero and the upper limit is chosen
adaptively with regard to the desired accuracy.
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A quasi-Newton method with BFGS update of the Hessian matrix B"+ 2u [12] is used
to minimize the objective function u(z) with z"(Z=

1
, Z=

2
,2,Z=

N
)T. The elements of z are

normalized so that Z
IN
"1. The kth iteration of z is

z
k`1

"z
k
#c

k
d
k
, d

k
"!B~1

k
+u (z

k
), (32)

where +u is the gradient of the objective function u. Line search in the direction d
k

(i.e.,
"nding the value c

k
which minimizes u(z

k
#c

k
d
k
)) is carried out by a mixed quadratic and

cubic interpolation. The BFGS update is

B
k`1

"B
k
#

q
k
qT

k
qT

k
p
k

!

B
k
p
k
pT
k
B

k
pT
k
B
k
p
k

, (33)

where

p
k
"z

k`1
!z

k
, q

k
"+u(z

k`1
)!+u (z

k
). (34)

Normally, the initial vector z
0

is taken as the solution of the corresponding elastic problem
[10]. The initial Hessian is taken to be B

0
"I. The iteration is stopped when

max(Dd
k
D)(2]10~6 and !+u(z

k
)Td

k
(2]10~6. These criteria concern the changes in

z and in u, respectively, from one step of iteration to the next.
When the optimum junction and the energy transmission coe$cient g

T
are known, the

energy re#ection coe$cient g
R

can be determined from equations (14), in a similar way as
g
T
; and the energy dissipation coe$cient g

D
can be obtained from equation (15).

4. NUMERICAL EXAMPLES

In the numerical examples which follow, the ratio between the characteristic impedances
of the output and input bars is taken to be Z

OUT
/Z

IN
"2, and the number of segments of

each junction is chosen to be N"40.
The material is represented by the standard linear solid model, i.e., equation (3). For this

model, the loss angle d"arctan[Im(E)/Re(E)] has the maximum

d
0
"arctan[(t

c
!t

r
)/2(t

c
t
r
)1@2] (35)

at u"1/t
0

with

t
0
"(t

c
t
r
)1@2. (36)

The incident wave is chosen to be a rectangular pulse with duration j.
Figures 4}6 show the characteristic impedances MZ=

k
NN
k/1

of optimum junctions for the
normalized incident wave durations j/2d" 1

10
, 1
5
, 1
2
, 1 and 2, and the maximum loss angles

d
0
"03, 153 and 453. Figure 4 shows results for the normalized response time constant

t
0
/2d"0)5, Figure 5 for t

0
/2d"1, and Figure 6 for t

0
/2d"2.

Figure 7 shows the energy re#ection, transmission and dissipation coe$cients g
R
, g

T
and

g
D

for optimum junctions versus the normalized incident wave duration j/2d. Results are
shown for the maximum loss angles d

0
"03, 153 and 453, and for the normalized response

time parameters t
0
/2d"0)5, 1 and 2.

The numerical method used does not guarantee that the maximum of the energy
transmission coe$cient g

T
found in each numerical example is not just one of the several



Figure 4. Characteristic impedances MZ=
k

NN
k/1

of optimum junctions for rectangular incident waves with
di!erent normalized durations j/2d and di!erent values of the maximum loss angle d

0
. Characteristic impedance

ratio Z
OUT

/Z
IN
"2, normalized response time parameter t

0
/2d"0)5 and number of segments N"40.
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local maxima. However, numerical experiments carried out with di!erent initial vectors
z
0

never changed the result of an optimization which indicates that the maxima obtained
are global.

5. DISCUSSION

The governing system of equations (4) is based on the assumption that the normal stress
associated with the waves in the input bar, the junction and the output bar is uniformly
distributed and that the state of stress is uni-axial. However, the axial expansions and



Figure 5. Characteristic impedances MZ=
k

NN
k/1

of optimum junctions for rectangular incident waves with
di!erent normalized durations j/2d and di!erent values of the maximum loss angle d

0
. Characteristic impedance

ratio Z
OUT

/Z
IN
"2, normalized response time parameter t

0
/2d"1 and number of segments N"40.
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contractions associated with the waves give rise to lateral motions which necessarily result
in non-uniform distributions and three-axial states of stress. These and other three-
dimensional (3D) e!ects are important only if the operative wavelengths are of the same
order as the transverse dimensions of the bars and the junction or less [13]. For the validity
of the results, therefore, it is a necessary requirement that the incident wave be much longer,
say, by a factor of 10 or more, than these transverse dimensions.

When the parameter d
0
"03, it follows from equation (35) that t

c
"t

r
. Also, it follows

from equation (3) that E"E="E
2
. Thus in this case the complex modulus is real and

constant, which means that the junction is linearly elastic. For 03(d
0
(903, the junction

is linearly viscoelastic, and the damping of the material increases with d
0
. The parameter



Figure 6. Characteristic impedances MZ=
k

NN
k/1

of optimum junctions for rectangular incident waves with
di!erent normalized durations j/2d and di!erent values of the maximum loss angle d

0
. Characteristic impedance

ratio Z
OUT

/Z
IN
"2, normalized response time parameter t

0
/2d"2 and number of segments N"40.
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t
0

is the geometrical mean of the time constants t
c

for creep and t
r

for relaxation
which characterize the response of the viscoelastic material to abrupt changes of stress and
strain respectively. Therefore, the parameter t

0
represents these response times of the

viscoelastic material, and in this sense it is considered here to be a response time parameter
itself.

The optimum elastic junctions shown in Figures 4}6 for d
0
"03 and j/2d in the range

1
10
}2 have piece-wise constant characteristic impedances with plateaux in agreement with

[10]. Thus, when j/2d"m/n, where m and n are integers without common factor, the
optimum junction has n plateaux regardless of the number of segments N used to represent
it provided that N is an integral multiple of n. Also, the optimum elastic junctions are



Figure 7. Energy re#ection, transmission and dissipation coe$cients g
R
, g

T
and g

D
for optimum junctions versus

normalized duration j/2d of rectangular incident wave for di!erent values of the maximum loss angle d
0

and the
normalized response time parameter t

0
/2d. Characteristic impedance ratio Z

OUT
/Z

IN
"2 and number of segments

N"40.
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anti-symmetric in the sense that Z
1
Z

N
"Z

2
Z

N~1
"2"Z

IN
Z

OUT
[2]. This property of

optimum junctions was observed also by Konstanty and Santosa [9] from their numerical
results for pulses of small width. Finally, it can be noticed, in agreement with [10], that for
the shortest incident wave in Figure 4 (j/2d" 1

10
) and elastic material (d

0
"03), the

characteristic impedance ratios MZ
k
/Z

k`1
NN
k/0

are approximately constant. Thus, in this
case, the characteristic impedances are in approximate geometrical progression. This
indicates that for very short incident waves, the optimum elastic junction would have
exponential variation of its characteristic impedance.

Figures 4}6 show that the optimum viscoelastic junctions (d
0
"15 and 453) have the

appearance of deformed versions of their elastic counterparts (d
0
"03). Thus, the plateaux

of the elastic junctions are increasingly deformed and displaced with increased damping
parameter d

0
and, less markedly, with decreased response time parameter t

0
/2d. Also, the

transitions between these deformed plateaux of a junction appear to be discontinuous,
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similar to the elastic case. However, the apparent discontinuities become decreasingly
notable with increased damping.

It may appear strange that the optimum viscoelastic junctions shown in Figures 4}6 for
d
0
"453 and j/2d"2 have characteristic impedances MZ=

k
NN
k/1

which are larger than the
input and output characteristic impedances Z

IN
and Z

OUT
. This means that the masses

:Z=(m) dm of these junctions are large (relative to the mass of a portion of the input bar
with the same transit time d as the junction, which has the mass Z

IN
d ), which promotes

re#ection and, correspondingly, counteracts transmission. However, also the sti!nesses
[:dm/Z=(m)]~1 of these junctions are large (relative to the sti!ness of a portion of the input
bar with the same transit time d as the junction, which has the sti!ness Z

IN
/d ), which

counteracts dissipation and, therefore, promotes transmission. Also, Figure 7 shows that in
these cases g

R
;g

D
, i.e., the re#ected energies are much smaller than the dissipated energies.

Therefore, the process of optimization may have promoted transmission by decreasing
dissipation at the cost of increased re#ection. For relatively short incident waves (say,
j/2d(1), however, the mass and sti!ness of a junction have little relevance to the
propagation of waves, and it can be seen in Figures 4}6 that in such cases the optimum
viscoelastic junctions are less di!erent from the elastic ones.

For short incident waves, with small values of j/2d, and an elastic junction with slowly
varying characteristic impedance, the energy re#ection and transmission coe$cients should
tend to zero and unity respectively. Thus, such relatively short waves should be transmitted
without being a!ected by the apparently slow change of characteristic impedance of the
junction. For long incident waves, with large values of j/2d and energy spectrum close to
u"0, and an elastic or viscoelastic junction with "nite characteristic impedances, the
energy re#ection coe$cient should tend to gA

R
"[(Z

IN
!Z

OUT
)/(Z

IN
#Z

OUT
)]2 and the

transmission coe$cient to gA
T
"4Z

IN
Z

OUT
/(Z

IN
#Z

OUT
)2. These are the energy re#ection

and transmission coe$cients for any incident wave when there is an abrupt change of
characteristic impedance from Z

IN
to Z

OUT
. Thus, such relatively long waves should be

transmitted as though the change in characteristic impedance was abrupt from Z
IN

to Z
OUT

.
It follows that optimization of a viscoelastic junction can be expected to be insigni"cant for
very large values of j/2d.

Figure 7 shows that in the absence of damping (d3"03), the energy re#ection and
transmission coe$cients g

R
and g

T
have the expected behaviour for small and large values

of j/2d. Thus, g
R

asymptotically increases with j/2d from zero to gA
R
"0.111, whereas

g
T

asymptotically decreases from unity to gA
T
"0.889. In the presence of damping, the

general behaviour of g
R

is the same as in the elastic case, whereas that of g
T

is di!erent.
Thus, g

T
asymptotically increases or decreases with j/2d from a value between zero and one

for small values of this parameter to gA
T

for large values. The dissipation coe$cient
g
D

assumes a value between zero and one for small values of j/2d and asymptotically
approaches zero for large values of this parameter. The main e!ects of increasing the
response time parameter t0/2d are to increase the transmission coe$cient g

T
, to decrease

the re#ection coe$cient g
R

and to decrease the dissipation coe$cient g
D
.

The weak dependence of the coe$cients g
R
, g

T
and g

D
on the parameters d

0
and t

0
/2d for

large values of the normalized wave duration j/2d can be explained as follows. When the front
of a rectangular incident wave arrives at a junction, waves are transmitted into the junction
where they are repeatedly re#ected at the two end faces. As a result, energy is dissipated. If the
incident wave is su$ciently long, the re#ected and transmitted waves reach constant
amplitudes and the junction comes into a state of constant stress, strain and velocity. While
this state prevails, the junction provides a rigid connection between the input and output bars,
and its mass has no e!ect as there is no acceleration. Also, there is no dissipation in the
junction as the strain rate is zero. Repeated re#ections of waves and dissipation
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in the junction resume at the arrival of the end of the incident wave. Therefore, if the
incident wave is very long, re#ection and transmission mostly occur as an abrupt change in
characteristic impedance from Z

IN
to Z

OUT
.
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APPENDIX A: NOMENCLATURE

A cross-sectional area
C transfer matrix of segment
E complex modulus
E
1
, E

2
constitutive parameters (sti!ness)

F vector de"ning wave amplitudes
G function de"ning frequency dependence of E, c, and Z
H transfer matrix of junction
I identity matrix
N number of segments
= energy
Z characteristic impedance
c wave speed
d transit time through junction
f normal force
h transit time through segment
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kK
R
, kK

T
energy re#ection and transmission coe$cients for a given frequency

q constitutive parameter (viscosity)
t time
t
0

response time parameter of material
v particle velocity
x axial co-ordinate (distance)
z vector of characteristic impedances

Greek letters

a logarithmic measure of characteristic impedance ratio
b coe$cient in series expansion
d delta function; loss angle of material
d
0

maximum loss angle of material
g energy coe$cient
j duration of incident wave
m axial co-ordinate (travel time)
o density
u objective function
u angular frequency

Subscripts

D dissipated
I incident
IN input bar
O;¹ output bar
R re#ected
¹ transmitted
c creep
r relaxation
0 maximum loss angle of material

Superscripts

A abrupt
as asymptotic part
n negative direction
p positive direction
re remaining part
R high frequencies


	1. INTRODUCTION
	2. FORMULATION OF THE OPTIMIZATION PROBLEM
	Figure 1
	Figure 2

	3. NUMERICAL OPTIMIZATION PROCEDURE
	Figure 3

	4. NUMERICAL EXAMPLES
	Figure 4

	5. DISCUSSION
	Figure 5
	Figure 6
	Figure 7

	ACKNOWLEDGMENTS
	REFERENCES
	APPENDIX A: NOMENCLATURE

